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Multiple-stranded helical structures are ubiquitous in Nature,
particularly in biomacromolecules, such as DNA and collagen.1

They are constructed through the cooperative action of several
noncovalent forces and are significantly linked to their elaborate
biological functions. Inspired by the biopolymers with multiple-
stranded helical structures, chemists have exerted much effort to
intertwine artificially designed oligo- or macromolecular strands
to form multiple-stranded helical structures by utilizing noncovalent
interactions.2 We have recently reported the rational design and
synthesis of complementary double helices with optical activity,
of which the strands consist of crescent-shapedm-terphenyl groups
bearing chiral amidine and achiral carboxyl groups.3 The double
helix formation with a controlled helicity is driven by the chiral
amidinium-carboxylate salt bridges, which are tolerant to other
various functional groups, thereby making a wide range of designs
possible.4

Supramolecular polymerization has recently emerged as a new
protocol to synthesize macromolecules by holding together small
molecules through noncovalent bonds, and a number of such
supramolecular polymers have been reported to date.5 However,
to the best of our knowledge, double-stranded supramolecular
helical polymers stable in solution are hitherto unknown.6 With
the aim of constructing double-stranded metallosupramolecular
helical polymers with optical activity, we designed new ami-
dinium-carboxylate duplexes bearing pyridine groups at the four
ends,1R‚2 and 1S‚2 (Figure 1). The pyridine groups are utilized
for the metal coordination site to form the metallosupramolecular
strands, which can be intertwined through the amidinium-carboxy-
late salt bridges to give rise to the double-stranded metallopolymers
3R and3S, as illustrated in Figure 1. In this paper, we describe the
synthesis and characterization of the first double-stranded metal-
losupramolecular helical polymers with a controlled helicity along
with their atomic force microscopy (AFM) visualization.

Supramolecular polymerization of the duplexes1R‚27 and1S‚27

with cis-diphenylbis(dimethyl sulfoxide)platinum(II)8 (cis-PtPh2-
(DMSO)2) was first investigated by1H NMR spectroscopy (Figure
2). Upon mixing1R‚2 and 2 equiv ofcis-PtPh2(DMSO)2 in 1,1,2,2-
tetrachloroethane-d2 (TCE-d2), the1H NMR spectrum of the mixture
became significantly broadened and showed a signal due to free
DMSO at 2.51 ppm, indicating that the supramolecular polymer-
ization has occurred. The resonances of the NH protons remained
at a low magnetic field of ca. 13.5 ppm,3 showing that the salt
bridges were retained after the polymerization.

To assess the hydrodynamic dimensions of the supramolecular
polymers, DOSY1H NMR (diffusion-ordered spectroscopy) and
DLS (dynamic light scattering) experiments were carried out at 25
°C in TCE.7 The diffusion constants for1R‚2 and 3R in TCE-d2

were measured by pulsed field gradient NMR experiments using
the BPPSTE pulse sequence.9 The diffusion constant for the supra-
molecular polymer3R was determined to beD ) 6.0 × 10-11 m2

s-1, while a higher value ofD ) 1.6× 10-10 m2 s-1 was obtained
for the monomer1R‚2. These values mean that the hydrodynamic
volume of3R is ca. 20 times higher than that of1R‚2.10 The average
hydrodynamic radius of3R derived from the DLS data wasRH )
9.5 nm.7 The DLS and DOSY experiments were also carried out
at different ratios ofcis-PtPh2(DMSO)2 to 1S‚2; the assembly size
reached its maximum at a ratio of 2.0, that is, the stoichiometry
used for the supramolecular polymerization (Figure S7).7 In contrast,
the light scattering signals for1R‚2 were undetectable. Thus, these
results support the polymeric structure of3R.

More information on the structures of the metallosupramolecular
polymers was obtained by absorption and CD spectroscopies (Figure
3). The absorption spectrum of3R in TCE showed a typical metal-
to-ligand charge transfer (MLCT) band in the long wavelength
regions (370-450 nm), and a marked bathochromic shift (∆λ )
ca. 15 nm) was observed for the absorption of ca. 320 nm when
compared to the monomer1R‚2, providing strong evidence for the
Pt-N coordination leading to the largeπ-conjugation system of
3R.11 In addition,3R and3S exhibited perfect mirror image Cotton
effects of each other, thus reflecting the absolute configurations of
the (R)- and (S)-phenylethyl groups at the amidine residues,
respectively. It should be mentioned that, in the CD spectra of3R

and 3S, distinct Cotton effects were observed around the MLCT
band regions, suggesting that the chirality of the phenylethyl groups
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Figure 1. The synthesis of the double-stranded metallosupramolecular
helical polymers3R and3S. R1 ) (R)-1-phenylethyl for1R‚2 and3R; (S)-
1-phenylethyl for1S‚2 and3S.

Figure 2. 1H NMR spectra of (A)cis-PtPh2(DMSO)2 (1.0 mM), (B)1R‚2
(1.0 mM), and (C) a polymerization mixture of1R‚2 (1.0 mM) andcis-
PtPh2(DMSO)2 (2.0 mM) in TCE-d2 at 25°C.
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is transferred to the Pt(II) complex moieties, and accordingly, the
double-stranded metallopolymers3R and3S adopt an excess one-
handed helical structure in solution.12

AFM provided direct evidence for the polymeric structure of
3R. Panels A-D of Figure 4 show typical tapping-mode AFM
images of3R cast from a dilute solution in TCE ([3R] ) 2 µM) on
highly oriented pyrolytic graphite (HOPG). The AFM images
showed that the polymers self-assembled into regular two-
dimensional bundles with a constant height of 1.4 nm.13 In the high-
resolution AFM image (Figure 4D), the bundle structures were
resolved into individual polymeric3R chains packed parallel to each
other with a chain-chain spacing of ca. 2.6 nm. Although we could
not identify the helical structure of3R, these AFM observations
are in good agreement with the molecular mechanics (MM)-
calculated structure of3R (Figure 4E).14 The average length of the
polymers was approximately 100 nm, corresponding to ca. 40
repeating units.

In summary, we have successfully synthesized the first artificial
double-stranded metallosupramolecular helical polymers consisting
of two complementary metallopolymer strands that are intertwined
through chiral amidinium-carboxylate salt bridges. We believe that
the combination of salt bridges and metal coordination used in this
study can be applied to the construction of a wide variety of
multiple-stranded supramolecules, which is now under investigation
in our laboratory.
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Figure 3. (A) Absorption and (B) CD spectra of1R‚2, 1S‚2, 3R, and3S in
TCE (1.0 mM) at ca. 25°C.

Figure 4. AFM (A) height and (B) phase images of3R prepared by casting
a dilute solution (4µg mL-1) in TCE on HOPG. (C) The cross-section
profile along the yellow line in the image (A). (D) The magnified image
corresponding to the area indicated by the square in the image (B). (E) A
space-filling drawing of a possible right-handed double helical structure of
the trimer of3R obtained by MM calculation.7
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